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The laminar and turbulent mixing of jets of 

compressible fluid. Part I1 The mixing of two 
semi-infinite streams 

By L. J. CRANE 
Department of Mathematics, The Royal College of Science and Technology, Glasgow 

(Received 2 April 1957) 

SUMMARY 
This paper presents the application of the methods developed 

in a previous paper (Part I, Crane & Pack 1957) to the mixing 
of two parallel streams for both laminar and turbulent flows. 
The effects of both high velocity and large temperature difference 
are treated together. The method used consists in developing 
the stream function in a double series of powers of two parameters, 
the first being the Mach number and the second depending on 
the temperature difference of the streams. Analytical expressions 
are found for the terms up to the second order in the series for 
the stream function when the streams do not differ too greatly 
in velocity and temperature. However, when one of the streams 
is at rest the analytical method is no longer sufficiently accurate, 
and for this case numerical solutions are given. 

For laminar mixing the most important effect is that of ‘ change 
of scale ’, as was found in Part I for a laminar jet at large distances . 
from the orifice. For turbulent half-jets the effect of ‘ change of 
scale’ and the effect of the perturbation terms due to the Mach 
number Of the flows are approximately equal and opposite, 
leaving the form of the velocity profile sensibly unchanged from 
that in incompressible flow. This last result is confirmed by 
comparison with some experiments of Laurence (1955) on a 
two-dimensional jet at M = 0-7. Lastly, the effect of temperature 
differences is shown to be relatively unimportant even when 
these are fairly considerable. 

INTRODUCTION 
The mixing of two semi-infinite incompressible streams has been studied 

by Gortler (1942), by Lessen (1949), and by Lock (1951). Gortler’s method 
of analysis, applied to turbulent flow in the streams, was adapted by Pai 
(1954) to the study of laminar mixing of incompressible streams. Gortler’s 
solution is here used as a starting-point for the calculation of the mixing 
of streams of compressible fluid. The functions originally calculated 
numerically by Gortler are given below in analytical form. It has been 
found necessary to treat separately the cases (i) where the velocities of the 
streams are not very different and (ii) where one of the streams is at rest. 
This is because the convergence of the series obtained by Gortler’s method 
is not sufficiently rapid in case (ii). 
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EQUATIONS OF MOTION 

Let u, 21 be the velocity components (or mean velocity components in 
the case of turbulent flow) parallel to Cartesian (x, y)-axes. Let the origin 
of coordinates be taken at the point at which the mixing begins. Let p be 
the density of the gas in the jet, and T the absolute temperature. The 
assumptions on which the theory rests in this paper are exactly those used 
in Part I (Crane & Pack 1957) in establishing the equations of motion. 
These assumptions are that the boundary layer equations hold and that 
in the turbulent case there exists a coefficient of eddy kinematic viscosity E 
which is independent of the y coordinate. Hence the basic momentum 
equation for both laminar and turbulent half-jet mixing is equation (6 )  
of Part I. namelv 

In this equation, # is the two-dimensional stream function defined by 

pu = a#/ay, pv = -a#/ax; x is a variable defined by z = 1 p/po dy ; 

T" = TITo (the suffix 0 refers to a fixed state of the fluid to be defined 
later); and 5 is a function of x. For laminar flows 5 = x, ci = po and 
/3 = tt - 1, n coming from the law of variation of the coefficient of viscosity p 

with T (i.e. p cc T"). e(x) dx, where e(x) is 

an experimentally determined function of x defined by E = c0e(x), E~ being 
a constant; also, u = eopo and p = -2. Let the two streams in their 
uniform state have speeds U,, U,  parallel to the x-axis, as they cross the 
half-lines y > 0, y < 0 respectively. Let 

The solution giving similarity of velocity profiles is expressed by 

Y 

0 

For turbulent flows 5 = 1: 

uo = +( u, + U,), A = (U ,  - Us)/( u, + U2). 

+ = (Pouou5)1'2g(11), q = (Y)"' z 

and the equation for g(7)  is 
d 
- { T"'g"} + &gg" = 0,  
d.I 

where dashes indicate differentiations with respect to q. 
As in Part I, if the Prandtl number is assumed to be unity then a particular 

integral (Crocco's relation) satisfying the boundary layer equations of 
energy and momentum for both laminar and turbulent flow of jet type is 

where A, B are constants, the values of which depend upon the boundary 
conditions in the given problem, and i = C, T (the enthalpy per unit mass). 
Crocco's relation has to satisfy the conditions u = U,, T = T,, p = p1 at 
y = + co,andu = U,, T = T2,p = pzaty = - m. Theseleadtothefollowing 
expression for the Crocco relation : 

h 
A 

+uZ+i= A+Bu, 

(3) T * =  1+ - ( u * - ~ ) - w ~ u " ~ ,  
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where 
T" = TIT,, U" = u/UO, WE = UG/2C,To, 

I1 - I2 
11+12' 

I1 + I2 , Ii  = CpTi+&U: (i  = 1 ,  2), h = - T --- 
O - 2cp 

The properties po and po of the gas are taken at the temperature To. The 
quantities I l  and I2 are the stagnation enthalpies in the reservoirs from 
which the uniform streams may be supposed to have come. 

The equation (3) shows how the initial discontinuities of temperature 
and velocity are smoothed out when the mixing is completed. In fact, 
the stagnation enthalpy at a point in the jet where the velocity is u,  obtained 
by bringing the fluid at that point to rest adiabatically, is equal to 

( 1 2  - m u  - Ul) 
11+ u2-u1 

Let g(r)) in (2) be expanded in the double series: 

r = o  s=o 

where 6 = $(v - b), r) = b giving the locus of those points of the flow where 
the velocity is U,, and all the ars are equal to - /3 except a,, which is equal 
to 2. Then 

I .  m w  

and 

T"'= 1 + / 3  - ( u " - ~ ) - - w ; u "  +.... (5) ("x 1 
The above expressions are valid for sufficiently small h and a:, since the 
numerical value of (u" - l)/X is less than unity. 

The boundary conditions on g'(r)) are 

g'( + CO) = 1 +A, g'(b) = 1 ,  g'( - CO) = 1 -A. 

Lock* (1951) has shown for the incompressible case that any given solution 
of (2) generates an infinity of solutions, all of which satisfy the same boundary 
conditions at q = _+ co. These solutions may be obtained by replacing r) 

by r )  + c in the given solution, c being an arbitrary constant. This result 
can be shown to be true for the compressible case. Each one of this infinity 
of solutions is an equally valid solution of the boundary layer problem 
because the solution obtained by replacing r )  by r )  + c in any given solution 
leads to a value of the y-component of the velocity on the boundary which 
differs by an amount of order U,c/z/(Re) from that of the given solution, 
Re being a large dimensionless constant. (In laminar flow Re is the usual 
Reynolds number; when the flow is turbulent Re is defined as in the 
laminar case except that the coefficient of kinematic viscosity po/po is replaced 
by the eddy coefficient of kinematic viscosity E,.) To pick out the correct 

The author is indebted to the referee for drawing his attention to Lock's work, 
and also for other helpful criticism. 
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solution it is necessary to take into consideration those terms of the 
Navier-Stokes equations of order 1/1/Re higher than the terms of the 
boundary layer equations. It follows from the above discussion that the 
velocity at any finite 7 is mathematically indeterminate from the boundary 
layer equations alone. Thus b, which by definition gives the locus of 
points in the flow whose velocity is Uo, is likewise indeterminate. The 
value of b can however be found from experiment. When b is known the 
solution to the problem is uniquely determined. 

The equations for the functions frS are obtained by substituting (4) 
and ( 5 )  into (2) and equating the coefficients of 026h, to zero. Thus 

f;; + 2f;ofLlo = 0, 

fi'l+ 2 U O O  f;, +f6'0 f10) + 2 (f;:f;o> = 0, 

(6)  

(7) 
d 

and so on. The boundary conditions are 

fob( + a) = 1 +A,  

f;,<+ a) = 0, 

f o x +  ..) = 0, 

fiO(O) = 1, 

fiO(0) = 0, 

f & ( O )  = 0, 

fro( - co) = 1 -A, 

L o ( - -  co) = 0, 

fox- 00) = 0. 
The  solution of these equations will be found for two separate cases, namely, 
when X is small (say less than 0.3) and when X = 1, the latter corresponding 
t o  one of the streams (here the lower stream) being at rest. In  this way 
many examples of practical interest are likely to be covered. 

CASE I. SOLUTION FOR SMALL VALUES OF h 
(1) The functions f r s  may be expanded in series of ascending powers 

Qf A. If 
00 

foo = z: F,(OX", 
n=O 

then 
Fi(0) = 1, 
Fi(0) = 0, 

F;( & a) = 1, 
F;( & a) = * 1, 

FJO) = 0, FA( & 03) = 0, (n = 2, 3, ...). 

The functions F, are to be derived from differential equations obtained by 
inserting the above expansion off,, in (6) and equating to zero the coefficients 
,of successive powers of A. They were first evaluated numerically by Gortler. 
They may also be expressed in analytical form, and have been tabulated 
here from these analytical expressions (see table 1). The numerical values 
show that the expansion of foo does not converge very quickly when X is 
greater than about 0.3. For this reason the important case when X = 1 is 
considered separately below. 
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The following are the analytical forms of Gortler's functions, in which 
2 
d7T a,([) = -e-Ez, 

d7T 1 1 /3, = - T ( 2  + --) = - 0.72521. 

F, = P,  
F, = 5@ + &@I+ /31, 

F 2 -  - -+,$a,- 2@@1 + /31 @ + d ( 2 / d @ ( d 2 5 )  + 45, 
F' 3 - - 1@3- 2 (a53++M)@2@1-( (a52+9)@~@- &5@:-(3113/47T)@(2/35)- 

- p l ( p  + &)@@, - 9/31 5@: + (3'\13/477 - 4)@ + 5(t - /3w, + 
+ 4 ( 2 / n ) @ ,  @( %!25). 

.(F3 is not evaluated since F3(0) = d3 which is unknown.) 
(2 )  Next let 

f10 = 5 G , W .  
0 

The boundary conditions are 
(n  = 0, 1,  ...). 

'The equations for G, obtained by insertion into (7) are 
GA(0) = GA( k 00) = 0, 

G: + 25Gg = 0, 
GY + 25G'; + 2G, F'; + 2Fy = 0,  

and so on. The solution to the first of these equations satisfying the boundary 
conditions is found to be Go = a,, where a, is a constant to be determined. 
In the equation for G,, put G; = Qt, ~ ( 5 ) .  Then 

y'+2a0-45 = 0. 
Thus G'; = (25, - 2a, 5 + C)al, 
where C is a constant. On integration and application of the boundary 
conditions, it is found that C = - 1,  a, = 0, and that 

The value of a, is found when the solution for Gk is calculated. In fact, 
G, = Q@, +a,. 

where /3, has the same value as before. The analytical forms of the functions 
Go, G,, G, are therefore 

GI = 4O1+a,, with a, = dn- (,& - :) = - 1.36927, 

Go = 0, 

The solution satisfying the boundary conditions on Fo is Fo = [ + c ,  where c is z 
On insertion of this expression for F,, in the equation for F,, it is seer constant. 

that c = 0 if Fl is to satisfy the boundary conditions. 
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The expressions for G3, G4, etc., could be found in the same way, but 
the labour involved in equating the complicated analytical terms would be 
very great, for example, G3 alone involves about 60 terms. When the 
above expressions for Gi and GL are used, f;o is obtained to 1% accuracy 
for values of h up to about 0-2 if the Mach number is less than five. 

(3) The same form of expansion is used forf,,, namely 
m 

f0l = EH7mn, 
0 

with the boundary conditions 

Hk(O) = Hk( rt a) = O (n = 0, 1, ...). 

A procedure similar to that used above then yields the results 

H, = c1 = &&r(l- 21.r) = 0.32204, 
H, = c, @ + (@2 + +@al - 8, 

= ((381 - &I) - ('(C, 2p1)}@@1- ((&1 f pi)@: - ($)Q3 -I- 

+ (+( - 53)@'a@, - p D :  @ + (43/T)@(d3f)  - 
- + ($ - 43/7r)@ - 2p1 c, (Q1. 

t(H2 has not been determined.) 
As for the other functions, the expressions for the higher H-functions 

could be found exactly, but the labour would be very great. However, 
when only the functions up to H2 are used, fi, is found quite accurately 
for values of h up to about 0.3. Indeed, on comparing Hi + Hi with the 
.exact solution forfoi when A = 1, it is seen that in the range I f 1  < 1.5 the 
.agreement is quite good. The maximum error in this range is about 5%. 

CASE 11. SOLUTION FOR h = 1 
When X = 1 the lower stream is at rest. The solutions of (6) to (8) are 

required subject to the conditions 

f o x +  a) = 2, f,O(O) = 1, f o x -  a) = 0, 
with all the other conditions unchanged. 

The solution 
tabulated below is in agreement with that of Lock (1951) for the same 
problem. 

The next equation to  solve is (7). Again a numerical method is required. 
It is seen that an integral belonging to the complementary function is 

flo = f&. By the use of this integral it is possible to reduce (7) to a 
second-order differential equation. When the asymptotic form of the 
complementary function of (7) is examined it is found that (7) has solutions 
which result in f;, remaining finite at f = f co whereas the reduced 
(second-order) equation has integrals which diverge exponentially at 

Thus it is advantageous to solve (7) itself numerically, rather 
than this reduced equation. 

An iterative method was used to solve equation (6). 

= co. 
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Two linearly independent parts of the complementary function of (7) 
with boundary conditions 

flO(0) = 0, fib(0) = 0, f;o(o) = 1, 
and fiO(0) = 1' f;o(o) = 0, f;o(o) = 0' 

flO(0) = 0, flO(0) = 0, f;o(o) = 0, 

respectively, were computed. A particular integral of the complete 
equation (7) with boundary conditions 

was obtained. A linear combination of the first two solutions was added 
to the particular integral to give the solution satisfying the boundary 
conditions. This treatment of (7) is equally applicable to (8) and was 
used to find the values of fol(f). Values of foe, f o l ,  f l o  and their first 
derivatives are given in table 2. 

THE EFFECT OF THE CHANGE OF SCALE 

If coi and h are both small, 

where 

When h is small, this approximation becomes 

( 1  + E+h[{Fl-  F1(0) )+XF2+h2{F~-F~(O))+  ...I - 
-&[t+ZX{F,- F,(O))+ ...I, 

but when h = 1 the equation (9) should be used. 
These relations show how changes in the width of the mixing region 

due to the 'change of scale'" depend on the difference of the stagnation 
enthalpies of the streams and on the Mach numbers of the flow. T o  a first 

approximation these effects are independent. By considering J 1) df 

it can be shown that the net effect on the width of the mixing region of 
differing stagnation enthalpies is very sIight when Ihl < 0-3 for any A. 
An example of h = 0.3 is afforded by two streams with stagnation 
temperatures of 300" C and room temperature respectively. The effect 
of a non-zero Mach number is to decrease the width of the mixing region 
as the Mach number increases. 

e 

0 

CONCLUSION 
The effect of compressibility on the non-dimensional velocity profile 

may be conveniently divided into two parts. One is the effect of change 

*The  ' change of scale ' eft'ect was defined in Part I as the difference between 
(i) the velocity profile obtained from the first term in the expansion for t,$, whea 
z is expressed in terms of the physical ordinate y and (ii) the velocity profile im 
incompressible flow (which comes from this same term with z = y ) .  
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of scale. 
perturbation terms fil, f&, ... . 
given by 

The other is the change in the velocity brought about by the 
The non-dimensional velocity profile is 

The perturbation terms in this equation depend on both compressibility 
and the variation of viscosity with temperature for laminar flow. For 
laminar flows the effect of change of scale is dominant, the perturbation 
cffect being negligible. As an example, for h = 1, the change in the velocity 
profile produced by putting p cc instead of p cc T is at most 4% for 
Mach numbers up to 5. Furthermore, since for Ihl < 0.3 the effect of h 
on the change of scale is negligible, the basic cause of changes in the profile 
in compressible laminar flow is the Mach number operating through the 
change of scale. The larger the Mach number the narrower is the mixing 
region. For example, when the lower stream is at rest and the upper stream 
has a speed given by M = 5 ,  the width of the mixing region is about 
three-quarters of that for incompressible flow, the Reynolds numbers 
being the same. The greater part of the contraction of the profile is in 
that part where the velocity is highest-as it is expected on physical grounds, 
since the effect of compressibility is naturally less in the more slowly moving 
parts of the mixing region. When the temperature of the upper stream is 
higher than that of the lower, that is, h > 0, the upper half of the profile 
tends to broaden and the lower to shrink. The effect is of course reversed 
when h < 0. This is also to be expected on physical grounds, since 
molecules in a hotter stream have higher random velocities than those 
in a cooler one and hence tend to transfer some of the momentum of the 
faster moving parts of the jet to the surrounding parts to a greater extent 
than in the cooler stream. 

For turbulent flows the perturbation terms and the change of scale have 
effects of the same order of magnitude. It is found on computing the 
non-dimensional velocity profile that they almost cancel each other. Thus 
the form of the non-dimensional velocity profile is left sensibly unchanged 
from that obtained in incompressible flow. In order to test this last result 
against experiment a scale factor u must be used", where ( = u(y-y,)/x 
if the coefficient of eddy viscosity is taken (following Gortler 1942) to be 
E,x/L.  y = yo gives the locus of points in the flow at which U = U,. 
From the equations developed above, u = (U,  L /ZE, )~ '~ .  The theory has 
been applied to the case examined experimentally by Laurence (1955), 
namely to a turbulent jet at Mach number 0.7 entering a medium at rest. 
The observations chosen for comparison were those taken in the neighbour- 
hood of the orifice where the core of the jet was at constant velocity. This 
might be expected to give the closest representation to the mixing of two 
parallel streams. The results have been plotted in figure 1 with u/U,  

*The scale factor u is not an absolute constant but may vary with the Mach 
number of the undisturbed stream, that is with mi. This does not affect the state- 
ment made in the preceding sentence. 
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as ordinate, U, being the velocity of the core of the jet, and with (yo-y)/x 
as abscissa. The best fit between theory and experiment was obtained 
for u = 12.7, when ( = u(yo-y)/x. The fit is seen to be good except in 
the part of the profile where the velocity is lower ; in this region the gradient 
.of the theoretical profile is less steep than that of the experimental profile. 

1.0 

0 8  

0.6 

0.4 

0 2  

/ 

- 0.2 

4o-y 
X 

I U 0.1 

'Figure 1. Comparison between Laurence's results and the theoretical profile with 
(T = 12.7, for the mixing region near the orifice when a turbulent jet of air 
issues at  Mach number 0.7 into air at rest. 

Now over the whole flow the gradient of the laminar profile corresponding 
t o  the laminar Reynolds number of the jet is steeper than the turbulent 
profile. This suggests that turbulence may not be fully developed in the 
lower velocity region, that is, the flow may be only intermittently turbulent 
there". 

* Subsequent to the writing of this paper the author's attention was drawn 
to the work of Johannesen (1957). Johannesen has shown that the solution f& 
gives an accurate fit, except in the region of lower velocity, to his experimental 
results for the non-dimensional velocity profile of the mixing region near the orifice 
when a round turbulent jet issues with Mach number 1.6 into a medium at rest. 
T h e  value of u used was 21 *9. 
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